抗热震性是指耐火材料抵抗温度急剧变化而导致损伤的能力。曾称热震稳定性、抗热冲击性、抗温度急变性、耐急冷急热性等。九龙坡不定型耐火材料
抗热震性的测定根据不同的要求与产品类型应分别按照相应的测试方法进行测定,主要测试方法有:黑色冶金标准YB/T 376. 1—1995耐火制品抗热震性试验方法(水急冷法)、黑色冶金标准YB/T 376. 2—1995耐火制品抗热震性试验方法 (空气急冷法)、黑色冶金标准YB/T 376. 3—2004耐火制品抗热震性试验方法第3部分:水急冷-裂纹判定法、黑色冶金标准YB/T 2206.1—1998耐火浇注料抗热震性试验方法(压缩空气流急冷法)、黑色冶金标准YB/T 2206. 2—1998耐火浇注料抗热震性试验方法(水急冷法)。
材料的力学性能和热学性能,如强度、断裂能、弹性模量、线膨胀系数、热导率等是影响其抗热震性的主要因素。一般来说,耐火材料的线膨胀系数小,抗热震性就越好;材料的热导率(或热扩散系数)高,抗热震性就越好。此外,耐火材料 的颗粒组成、致密度、气孔是否微细化、气孔的分布、制品形状等均对其抗热震性 有影响。材料内存在一定数量的微裂纹和气孔,有利于其抗热震性;制品的尺寸大、并且结构复杂,会导致其内部严重的温度分布不均和应力集中,降低抗热震性。
有研究表明,通过阻止裂纹扩展、消耗裂纹扩展动力、增加材料断裂表面能、降低线膨胀系数和增加塑性等方式可以提高耐火材料的热震稳定性。具体技术措施为:
(1)适当的气孔率
除了存在气孔之外,耐火材料内部骨粒和结合相之间还存在一定量的裂隙。耐火材料在断裂过程中,内部气孔和裂隙可以对断裂扩展裂纹起到一定的阻止和抑制作用。如作为高温热震条件下使用的耐火材料,在服役过程中,表面裂纹并不会引起材料的灾难性断裂,其损坏的原因多是由内部热应力导致的结构剥落。当材料内部气孔率较大时,将会缩短热应力作用下引起的裂纹长度,同时增加裂纹数量。短而多的裂纹相互交叉形成网状结构,增加了材料断裂时需要的断裂能,可以有效改善材料的热震稳定性。普遍认为,当耐火材料的气孔率控制在13%-20%时,具有较佳的热震稳定性。
(2)控制原料的颗粒级配、颗粒临界粒度和形状
相关研究表明,材料断裂引起的表面能和体系内颗粒尺寸的平方呈正比例关系。因此,通过在材料体系中中引入大颗粒骨料,使裂纹在大骨料附近转向,从而改善晶间裂纹性能,可以达到提高耐火材料热震稳定性的目的。一般来讲,耐火材料中骨料的弹性模量要明显大于基质,这种弹性模量的差异使得大颗粒骨料能够延缓材料原有裂纹的扩展。上述弹性模量差异越大,则骨料延缓裂纹扩展作用也就越明显。同时,骨料的形状也是影响耐火材料热震稳定性的重要因素。如在材料体系中添加适量的棒状或片状骨料均可以改善耐火材料制品的热震稳定性。